Fall 2013 Interstellar Solutions

- 41. **Answer (E):** Each four-digit palindrome has digit representation *abba* with $1 \le a \le 9$ and $0 \le b \le 9$. The value of the palindrome is 1001a + 110b. Because 1001 is divisible by 7 and 110 is not, the palindrome is divisible by 7 if and only if b = 0 or b = 7. Thus the requested probability is $\frac{2}{10} = \frac{1}{5}$.
- 42. Answer (D): Answer: 256 Rewriting each logarithm in base 2 gives

$$\frac{\frac{1}{2}\log_2 x}{\frac{1}{2}} + \log_2 x + \frac{2\log_2 x}{2} + \frac{3\log_2 x}{3} + \frac{4\log_2 x}{4} = 40$$

Therefore $5 \log_2 x = 40$, so $\log_2 x = 8$, and x = 256.

OR

For $a \neq 0$ the expression $\log_{2^a}(x^a) = y$ if and only if $2^{ay} = x^a$. Thus $2^y = x$ and $y = \log_2 x$. Therefore the given equation is equivalent to $5 \log_2 x = 40$, so $\log_2 x = 8$ and x = 256.

- 43. Answer (C): The maximum value for $\cos x$ and $\sin x$ is 1; hence $\cos(2A-B) = 1$ and $\sin(A+B) = 1$. Therefore $2A B = 0^{\circ}$ and $A + B = 90^{\circ}$, and solving gives $A = 30^{\circ}$ and $B = 60^{\circ}$. Hence $\triangle ABC$ is a $30-60-90^{\circ}$ right triangle and BC = 2.
- 44. Answer: Note that 3M > (a + b) + c + (d + e) = 2010, so M > 670. Because M is an integer $M \ge 671$. The value of 671 is achieved if (a, b, c, d, e) = (669, 1, 670, 1, 669).

45. Answer (D): Answer: 225

There are three cases to consider.

First, suppose that $i^x = (1+i)^y \neq z$. Note that $|i^x| = 1$ for all x, and $|(1+i)^y| \geq |1+i| = \sqrt{2} > 1$ for $y \geq 1$. If y = 0, then $(1+i)^y = 1 = i^x$ if x is a multiple of 4. The ordered triples that satisfy this condition are (4k, 0, z) for $0 \leq k \leq 4$ and $0 \leq z \leq 19, z \neq 1$. There are $5 \cdot 19 = 95$ such triples.

Next, suppose that $i^x = z \neq (1+i)^y$. The only nonnegative integer value of i^x is 1, which is assumed when x = 4k for $0 \le k \le 4$. In this case $i^x = 1$ and $y \ne 0$. The ordered triples that satisfy this condition are (4k, y, 1) for $0 \le k \le 4$ and $1 \le y \le 19$. There are $5 \cdot 19 = 95$ such triples.

Finally, suppose that $(1+i)^y = z \neq i^x$. Note that $(1+i)^2 = 2i$, so $(1+i)^y$ is a positive integer only when y is a multiple of 8. Because $(1+i)^0 = 1$, $(1+i)^8 = (2i)^4 = 16$, and $(1+i)^{16} = 16^2 = 256$, the only possible ordered triples are (x, 0, 1) with $x \neq 4k$ for $0 \leq k \leq 4$ and (x, 8, 16) for any x. There are 15 + 20 = 35 such triples.

The total number of ordered triples that satisfy the given conditions is 95+95+35=225.

46. Answer (E): Let N = abc + ab + a = a(bc + b + 1). If a is divisible by 3, then N is divisible by 3. Note that 2010 is divisible by 3, so the probability that a is divisible by 3 is ¹/₃.

If a is not divisible by 3 then N is divisible by 3 if bc + b + 1 is divisible by 3. Define b_0 and b_1 so that $b = 3b_0 + b_1$ is an integer and b_1 is equal to 0, 1, or 2. Note that each possible value of b_1 is equally likely. Similarly define c_0 and c_1 . Then

$$bc + b + 1 = (3b_0 + b_1)(3c_0 + c_1) + 3b_0 + b_1 + 1$$

= 3(3b_0c_0 + c_0b_1 + c_1b_0 + b_0) + b_1c_1 + b_1 + 1.

Hence bc + b + 1 is divisible by 3 if and only if $b_1 = 1$ and $c_1 = 1$, or $b_1 = 2$ and $c_1 = 0$. The probability of this occurrence is $\frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{2}{9}$. Therefore the requested probability is $\frac{1}{3} + \frac{2}{3} \cdot \frac{2}{9} = \frac{13}{27}$.

 $47. \ Answer: \ 42$

Let a_{ij} denote the entry in row *i* and column *j*. The given conditions imply that $a_{11} = 1$, $a_{33} = 9$, and $a_{22} = 4$, 5, or 6. If $a_{22} = 4$, then $\{a_{12}a_{21}\} = \{2,3\}$, and the sets $\{a_{31}, a_{32}\}$ and $\{a_{13}, a_{23}\}$ are complementary subsets of $\{5, 6, 7, 8\}$. There are $\binom{4}{2} = 6$ ways to choose $\{a_{31}, a_{32}\}$ and $\{a_{13}, a_{23}\}$, and only one way to order the entries. There are 2 ways to order $\{a_{12}, a_{21}\}$, so 12 arrays with $a_{22} = 4$ meet the given conditions. Similarly, the conditions are met by 12 arrays with $a_{22} = 6$. If $a_{22} = 5$, then $\{a_{12}, a_{13}, a_{23}\}$ and $\{a_{21}, a_{31}, a_{32}\}$ are complementary subsets of $\{2, 3, 4, 6, 7, 8\}$ subject to the conditions of $a_{12} < 5$, $a_{21} < 5$, $a_{32} > 5$, and $a_{23} > 5$. Thus $\{a_{12}, a_{13}, a_{23}\} \neq \{2, 3, 4\}$ or $\{6, 7, 8\}$, so its elements can be chosen in $\binom{6}{3} - 2 = 18$ ways. Both the remaining entries and the ordering of all entries are then determined, so 18 arrays with $a_{22} = 5$ meet the given conditions.

Altogether, the conditions are met by 12 + 12 + 18 = 42 arrays.

- 48. Answer (C): Let A denote the frog's starting point, and let P, Q, and B denote its positions after the first, second, and third jumps, respectively. Introduce a coordinate system with P at (0,0), Q at (1,0), A at $(\cos \alpha, \sin \alpha)$, and B at $(1 + \cos \beta, \sin \beta)$. It may be assumed that $0 \le \alpha \le \pi$ and $0 \le \beta \le 2\pi$. For $\alpha = 0$, the required condition is met for all values of β . For $\alpha = \pi$, the required condition is met only if $\beta = \pi$. For $0 < \alpha < \pi$, AB = 1 if and only if $\beta = \alpha$ or $\beta = \pi$, and the required condition is met if and only if $\alpha \le \beta \le \pi$. In the $\alpha\beta$ -plane, the rectangle $0 \le \alpha \le \pi, 0 \le \beta \le 2\pi$ has area $2\pi^2$. The triangle $0 \le \alpha \le \pi, \alpha \le \beta \le \pi$ has area $\frac{\pi^2}{2}$, so the requested probability is $\frac{1}{4}$.
- 49. Answer: 34

The Raiders' score was $a(1+r+r^2+r^3)$, where *a* is a positive integer and r > 1. Because *ar* is also an integer, r = m/n for relatively prime positive integers *m* and *n* with m > n. Moreover $ar^3 = a \cdot \frac{m^3}{n^3}$ is an integer, so n^3 divides *a*. Let $a = n^3 A$. Then the Raiders' score was $R = A(n^3 + mn^2 + m^2n + m^3)$, and the Wildcats' score was R - 1 = a + (a + d) + (a + 2d) + (a + 3d) = 4a + 6d for some positive integer d. Because $A \ge 1$, the condition $R \le 100$ implies that $n \le 2$ and $m \le 4$. The only possibilities are (m, n) = (4, 1), (3, 2), (3, 1), (4, 1), or (2, 1). The corresponding values of R are, respectively, 85A, 65A, 40A, and 15A. In the first two cases A = 1, and the corresponding values of R - 1 are, respectively, 64 = 32 + 6d and 84 = 4 + 6d. In neither case is d an integer. In the third case 40A = 40a = 4a + 6d + 1 which is impossible in integers. In the last case 15a = 4a + 6d + 1, from which 11a = 6d + 1. The only solution in positive integers for which $4a + 6d \le 100$ is (a, d) = (5, 9). Thus R = 5 + 10 + 20 + 40 = 75, R - 1 = 5 + 14 + 23 + 32 = 74, and the number of points scored in the first half was 5 + 10 + 5 + 14 = 34.

50. Answer: 8

The ratio between consecutive terms of the sequence is

$$r = \frac{a_2}{a_1} = \cot x,$$

so $a_4 = (\tan x)(\cot x) = 1$, and r is equal to

$$\sqrt{\frac{a_4}{a_2}} = \frac{1}{\sqrt{\cot x}}.$$

Therefore x satisfies the equation $\cos^3 x = \sin^2 x = 1 - \cos^2 x$, which can be written as $(\cos^2 x)(1 + \cos x) = 1$. The given conditions imply that $\cos x \neq 0$, so this equation is equivalent to

$$1 + \cos x = \frac{1}{\cos^2 x} = r^4$$

Thus $1 + \cos x = 1 \cdot r^4 = a_4 \cdot r^4 = a_8$.